Tetanus Severity Classification in Low-Middle Income Countries through ECG Wearable Sensors and a 1D-Vision Transformer

Image credit: Ping Lu

Abstract

Tetanus, a life-threatening bacterial infection prevalent in low- and middle-income countries like Vietnam, impacts the nervous system, causing muscle stiffness and spasms. Severe tetanus often involves dysfunction of the autonomic nervous system (ANS). Timely detection and effective ANS dysfunction management require continuous vital sign monitoring, traditionally performed using bedside monitors. However, wearable electrocardiogram (ECG) sensors offer a more cost-effective and user-friendly alternative. While machine learning-based ECG analysis can aid in tetanus severity classification, existing methods are excessively time-consuming. Our previous studies have investigated the improvement of tetanus severity classification using ECG time series imaging. In this study, our aim is to explore an alternative method using ECG data without relying on time series imaging as an input, with the aim of achieving comparable or improved performance. To address this, we propose a novel approach using a 1D-Vision Transformer, a pioneering method for classifying tetanus severity by extracting crucial global information from 1D ECG signals. Compared to 1D-CNN, 2D-CNN, and 2D-CNN + Dual Attention, our model achieves better results, boasting an F1 score of 0.77 ± 0.06, precision of 0.70 ± 0. 09, recall of 0.89 ± 0.13, specificity of 0.78 ± 0.12, accuracy of 0.82 ± 0.06 and AUC of 0.84 ± 0.05.

Publication
BioMedInformatics
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Add the publication’s full text or supplementary notes here. You can use rich formatting such as including code, math, and images.

Ping Lu
Ping Lu
Postdoctoral Researcher

My research interests include distributed robotics, mobile computing and programmable matter.