Dynamic spatio-temporal graph convolutional networks for cardiac motion analysis

Abstract

We propose a dynamic spatio-temporal graph convolutional network (DST-GCN) approach to learn the left ventricular (LV) motion patterns from cardiac MR cine images. We represent the myocardial geometry using a graph that is constructed from sample nodes on endo- and epicardial contours. The DST-GCN follows an encoder-decoder framework. The encoder accepts a given cardiac motion represented by a sequence of ST-GCN. The decoder employs a graph-based gated recurrent unit (G-GRU) to predict future cardiac motion. We show that the DST-GCN can automatically quantify the spatio-temporal patterns in cardiac MR that characterise cardiac motion. Experiments are performed on the UK Biobank dataset. We compare four methods from two architecture variances. Experiments show that the proposed method inputting node velocities with residual connection in the decoder outperform others, and achieves a mean squared error of 0.135 pixel between the ground truth node locations and our prediction.

Publication
2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Add the publication’s full text or supplementary notes here. You can use rich formatting such as including code, math, and images.

Ping Lu
Ping Lu
Postdoctoral Researcher

My research interests include distributed robotics, mobile computing and programmable matter.